OFFSET
0,5
COMMENTS
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
This sequence can be generated by the following pseudo code:
outputMap[2 to n] = n
for usedNumbers = 2 to n
for medianSize = ceil(usedNumbers / 2) + 1 to usedNumbers - 1
for medianValue = 1 to floor((n - usedNumbers + medianSize) / medianSize)
for numbersAboveMedian = 0 to usedNumbers - medianSize
calculateState(usedNumbers, medianSize, medianValue, numbersAboveMedian)
next numbersAboveMedian
next medianValue
next medianSize
if (usedNumbers mod 2 == 1)
for medianValue = 2 to Math.floor((n - usedNumbers + ceil(usedNumbers / 2))/ceil(usedNumbers / 2))
for numbersAboveMedian = 1 to usedNumbers - ceil(usedNumbers / 2) - 1
calculateState(usedNumbers, ceil(usedNumbers / 2), medianValue, numbersAboveMedian)
next numbersAboveMedian
next medianValue
endif
next usedNumbers
function calculateState(usedNumbers, medianSize, medianValue, numbersAboveMedian)
numbersBelowMedian = usedNumbers - medianSize - numbersAboveMedian)
bottomQTerms = gaussianBinomial(numbersBelowMedian + (medianValue - 1) - 1, numbersBelowMedian)
topQTerms = gaussianBinomial(n - 1 - 2 * numbersAboveMedian, numbersAboveMedian)
for bottomOffset = 0 to length(bottomQTerms) - 1
for topOffset = 0 to length(topQTerms) - 1
partitionSum = bottomOffset + topOffset + numbersBelowMedian + (medianSize * medianValue) + (numbersAboveMedian * (medianValue + 1));
if (partitionSum <= n)
outputMap[partitionSum] += bottomQTerms[bottomOffset] * topQTerms[topOffset]
next topOffset
next bottomOffset
end
where gaussianBinomial(m, n) takes the Gaussian Binomial (m choose n)_q and returns a zero-indexed array where each value in the array is the coefficient of q^index in the Gaussian binomial expansion.
LINKS
EXAMPLE
The a(2) = 1 through a(9) = 11 partitions:
(11) (111) (22) (2111) (33) (2221) (44) (333)
(1111) (11111) (222) (4111) (2222) (3222)
(3111) (31111) (5111) (6111)
(21111) (211111) (41111) (22221)
(111111) (1111111) (221111) (51111)
(311111) (321111)
(2111111) (411111)
(11111111) (2211111)
(3111111)
(21111111)
(111111111)
MATHEMATICA
wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Table[Length[Select[IntegerPartitions[n], Select[Permutations[#], wigQ]=={}&]], {n, 0, 15}]
CROSSREFS
The Heinz numbers of these partitions are A345171.
A000041 counts integer partitions.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions.
A344604 counts alternating compositions with twins.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 12 2021
EXTENSIONS
Terms a(26)-a(1000) by Joseph Likar, Aug 21 2023
STATUS
proposed