OFFSET
0,2
COMMENTS
If n<0, then a(n)=0. If n>0, then a(n) is even since (-x, -y, -z) is a solution if (x, y, z) is.
Rouse [2014] conjectures that the ternary quadratic form x^2 + 2y^2 + 5z^2 + xz represents all positive odd integers.
LINKS
J. Rouse, Quadratic forms representing all odd positive integers Amer. J. Math, 136 (2014), no. 6, 1693-1745.
K. S. Williams, Eveything You Wanted to Know about ax^2+by^2+cz^2+dt^2 But Were Afraid To Ask, Amer. Math. Monthly, Vol. 125, No. 9, (2018), 797-810. See page 803.
EXAMPLE
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 2*x^4 + 4*x^5 + 4*x^6 + 12*x^7 + ...
MATHEMATICA
a[ n_] := Length @ FindInstance[ x^2 + 2 y^2 + 5 z^2 + x z == n, {x, y, z}, Integers, 10^8];
PROG
(PARI) {a(n) = if( n<1, n==0, 2*qfrep([4, 0, 0; 0, 2, 1; 0, 1, 10], 2*n)[2*n])};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 12 2019
STATUS
approved