[go: up one dir, main page]

login
A319077 revision #38

A319077
Number of non-isomorphic strict multiset partitions (sets of multisets) of weight n with empty intersection.
10
1, 0, 1, 3, 12, 37, 130, 428, 1481, 5091, 17979, 64176, 234311, 869645, 3295100, 12720494, 50083996, 200964437, 821845766, 3423694821, 14524845181, 62725701708, 275629610199, 1231863834775, 5597240308384, 25844969339979, 121224757935416, 577359833539428, 2791096628891679
OFFSET
0,4
COMMENTS
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(2) = 1 through a(4) = 12 strict multiset partitions with empty intersection:
2: {{1},{2}}
3: {{1},{2,2}}
{{1},{2,3}}
{{1},{2},{3}}
4: {{1},{2,2,2}}
{{1},{2,3,3}}
{{1},{2,3,4}}
{{1,1},{2,2}}
{{1,2},{3,3}}
{{1,2},{3,4}}
{{1},{2},{1,2}}
{{1},{2},{2,2}}
{{1},{2},{3,3}}
{{1},{2},{3,4}}
{{1},{3},{2,3}}
{{1},{2},{3},{4}}
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
R(q, n)={vector(n, t, subst(x*Ser(K(q, t, n\t)/t), x, x^t))}
a(n)={my(s=0); forpart(q=n, my(f=prod(i=1, #q, 1 - x^q[i]), u=R(q, n)); s+=permcount(q)*sum(k=0, n, my(c=polcoef(f, k)); if(c, c*polcoef(exp(sum(t=1, n\(k+1), x^(t*k)*u[t] - subst(x^(t*k)*u[t] + O(x*x^(n\2)), x, x^2), O(x*x^n) ))*if(k, 1+x^k, 1), n))) ); s/n!} \\ Andrew Howroyd, May 30 2023
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 27 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, May 30 2023
STATUS
approved