[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301383 revision #49

A301383
Expansion of (1 + 3*x - 2*x^2)/(1 - 7*x + 7*x^2 - x^3).
4
1, 10, 61, 358, 2089, 12178, 70981, 413710, 2411281, 14053978, 81912589, 477421558, 2782616761, 16218279010, 94527057301, 550944064798, 3211137331489, 18715879924138, 109084142213341, 635788973355910, 3705649697922121, 21598109214176818, 125883005587138789, 733699924308655918
OFFSET
0,2
COMMENTS
y solutions to A000217(x-1) + A000217(x) = A000290(y-1) + A000290(y+2). The corresponding x values are listed in A075841.
y solutions to A000217(x-1) + A000217(x) = A000290(y-1) + A000290(y+1) are in A002315, and A075870 gives the x values.
y solutions to A000217(x-1) + A000217(x) = A000290(y-1) + A000290(y) are in A046090, and A001653 gives the x values.
Also, indices y for which 4*A000217(y) + 5 is a square. The next integers k such that k*A000217(y) + 5 is a square for infinitely many y values are 11, 20, 22, 29, 31, ...
First differences are in A106329.
FORMULA
O.g.f.: (1 + 3*x - 2*x^2)/((1 - x)*(1 - 6*x + x^2)).
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) = 6*a(n-1) - a(n-2) + 2.
a(n) = (3/4)*((1 + sqrt(2))^(2*n + 1) + (1 - sqrt(2))^(2*n + 1)) - 1/2.
a(n) = A033539(2*n+2) = A241976(n+1) + 1 = 3*A001652(n) + 1 = 3*A046090(n) - 2.
a(n) = A053142(n+1) + 3*A053142(n) - 2*A053142(n-1), n>0.
2*a(n) = 3*A002315(n) - 1.
4*a(n) = 3*A077444(n+1) - 2.
E.g.f.: (3*exp(3*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)) - cosh(x) - sinh(x))/2. - Stefano Spezia, Mar 06 2020
Let T(n) be the n-th triangular number, A000217(n). Then T(a(n)-3) + 2*T(a(n)-2) + 3*T(a(n)-1) + 4*T(a(n)) + 3*T(a(n)+1) + 2*T(a(n)+2) + T(a(n)+3) = (A001653(n) + A001653(n+2))^2. - Charlie Marion, Mar 16 2021
MAPLE
f:= gfun:-rectoproc({a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3), a(0)=1, a(1)=10, a(2)=61}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Mar 21 2018
MATHEMATICA
CoefficientList[Series[(1 + 3 x - 2 x^2)/(1 - 7 x + 7 x^2 - x^3), {x, 0, 30}], x]
PROG
(PARI) Vec((1+3*x-2*x^2)/(1-7*x+7*x^2-x^3)+O(x^30))
(Maxima) makelist(coeff(taylor((1+3*x-2*x^2)/(1-7*x+7*x^2-x^3), x, 0, n), x, n), n, 0, 30);
(Sage) m=30; L.<x> = PowerSeriesRing(ZZ, m); f=(1+3*x-2*x^2)/(1-7*x+7*x^2-x^3); print(f.coefficients())
(MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x-2*x^2)/(1-7*x+7*x^2-x^3)));
(Julia)
using Nemo
function A301383List(len)
R, x = PowerSeriesRing(ZZ, len+2, "x")
f = divexact(1+3*x-2*x^2, 1-7*x+7*x^2-x^3)
[coeff(f, k) for k in 0:len]
end
A301383List(23) |> println # Peter Luschny, Mar 21 2018
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Mar 20 2018
STATUS
proposed