OFFSET
1,3
COMMENTS
A subset-product of an integer partition y is a product of some submultiset of y. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Number of distinct values obtained when A003963 is applied to all dividors of n. - Antti Karttunen, Sep 05 2018
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
EXAMPLE
The distinct subset-products of (4,2,1,1) are 1, 2, 4, and 8, so a(84) = 4.
The distinct subset-products of (6,3,2) are 1, 2, 3, 6, 12, 18, and 36, so a(195) = 7.
MATHEMATICA
Table[If[n===1, 1, Length[Union[Times@@@Subsets[Join@@Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]], {n, 100}]
PROG
(PARI)
up_to = 65537;
v003963 = vector(up_to, n, A003963(n));
A301957(n) = { my(m=Map(), s, k=0, c); fordiv(n, d, if(!mapisdefined(m, s = v003963[d], &c), mapput(m, s, s); k++)); (k); }; \\ Antti Karttunen, Sep 05 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 29 2018
EXTENSIONS
More terms from Antti Karttunen, Sep 05 2018
STATUS
proposed