[go: up one dir, main page]

login
A279568 revision #8

A279568
Number of length n inversion sequences avoiding the patterns 110, 120, 201, and 210.
23
1, 1, 2, 6, 22, 90, 396, 1833, 8801, 43441, 219092, 1124201, 5850414, 30805498, 163824559, 878655117, 4747341879, 25815026491, 141173582016, 775920816789, 4283833709457, 23746640019657, 132116647765569, 737485227605338, 4129174120158569, 23183379592361839
OFFSET
0,3
COMMENTS
A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i<j<k) such that e_j <> e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 110, 120, 201, and 210.
It was proven that a_n also counts those length n inversion sequences with no entries e_i, e_j, e_k (where i<j<k) such that e_i <> e_j and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 100, 120, 201, and 210.
LINKS
EXAMPLE
The length 4 inversion sequences avoiding (110, 120, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123.
The length 4 inversion sequences avoiding (100, 120, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0121, 0122, 0123.
MAPLE
b:= proc(n, i, l) option remember; `if`(n=0, 1, add((h->
b(n-1, i-h+2, j-h+1))(max(1, `if`(j=l, 0, l))), j=1..i))
end:
a:= n-> b(n, 1$2):
seq(a(n), n=0..30); # Alois P. Heinz, Feb 23 2017
KEYWORD
nonn
AUTHOR
Megan A. Martinez, Feb 21 2017
EXTENSIONS
a(10)-a(25) from Alois P. Heinz, Feb 23 2017
STATUS
editing