OFFSET
1,2
COMMENTS
Odd terms of this sequence are prime most of the time. Odd composite terms of this sequence are 1, 323, 575, 6479, 7055, ...
EXAMPLE
3 is a term because (1^2 + 1^2 + 2^2) / (1 + 2 + 3) = 1.
10 is a term because (1^2 + 1^2 + 2^2 + 3^2 + 5^2 + 8^2 + 13^2 + 21^2 + 34^2 + 55^2) / (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) = 89.
MATHEMATICA
nn = 4800; Function[k, Select[Range@ nn, Divisible[k[[# + 1]], # (# + 1)/2] &]]@ LinearRecurrence[{2, 2, -1}, {0, 1, 2}, nn + 1] (* Michael De Vlieger, Mar 19 2016, after Vladimir Joseph Stephan Orlovsky at A001654 *)
PROG
(PARI) a(n) = fibonacci(n)*fibonacci(n+1);
for(n=1, 1e4, if(a(n) % (n*(n+1)/2) ==0, print1(n, ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 17 2016
STATUS
proposed