[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265245 revision #9

A265245
Triangle read by rows: T(n,k) is the number of partitions of n for which the sum of the squares of the parts is k (n>=0, k>=0).
1
1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,74
COMMENTS
Number of entries in row n = 1 + n^2.
Sum of entries in row n = A000041(n).
Sum(k*T(n,k), k>=0) = A066183(n).
FORMULA
G.f.: G(t,x) = 1/Product_{k>=1} (1 - t^{k^2}*x^k).
EXAMPLE
Row 3 is 0,0,0,1,0,1,0,0,0,1 because in the partitions of 3, namely [1,1,1], [2,1], [3], the sums of the squares of the parts are 3, 5, and 9, respectively.
Triangle starts:
1;
0,1;
0,0,1,0,1;
0,0,0,1,0,1,0,0,0,1;
0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,1.
MAPLE
g := 1/(product(1-t^(k^2)*x^k, k = 1 .. 100)): gser := simplify(series(g, x = 0, 15)): for n from 0 to 8 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 8 do seq(coeff(P[n], t, j), j = 0 .. n^2) end do; # yields sequence in triangular form
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 06 2015
STATUS
approved