OFFSET
1,1
COMMENTS
The Ramanujan taxicab number 1729 = 1^3 + 12^3 = 9^3 + 10^3 satisfies the equation a^n + b^n = c^n + d^n for n=3. The present sequence corresponds to the same equation with exponent n=4.
As far as is known, the existence of solutions to the equation with exponent n=5 remains an open question.
LINKS
Mia Müßig, Table of n, a(n) for n = 1..120000 (terms 1..56 from M. F. Hasler)
EXAMPLE
The quadruples [a,b,c,d] are, listed in order of increasing b = max{a,b,c,d}):
[59, 158, 133, 134], [7, 239, 157, 227], [193, 292, 256, 257], [118, 316, 266, 268], [177, 474, 399, 402], [14, 478, 314, 454], [271, 502, 298, 497], [103, 542, 359, 514], [386, 584, 512, 514], [222, 631, 503, 558], [236, 632, 532, 536], [21, 717, 471, 681], [295, 790, 665, 670], [579, 876, 768, 771], [354, 948, 798, 804], [28, 956, 628, 908], ...
PROG
(PARI) {n=4; for(b=1, 999, for(a=1, b, t=a^n+b^n; for(c=a+1, sqrtn(t\2, n), ispower(t-c^n, n)||next; print1([a, b, c, round(sqrtn(t-c^n, n))]", "))))}
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Feb 21 2015
STATUS
proposed