[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247004 revision #34

A247004
Denominator of (n+4)/gcd(n, 4)^2, a 16-periodic sequence that associates A061037 with A106617.
1
4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2
OFFSET
0,1
COMMENTS
This sequence may also be defined as the denominators of A061037(n+3)/(n+1), or also as A060819 / A109008.
One can notice that the analog numerators [numerators of (n+4)/gcd(n, 4)^2] are A106617 left-shifted 4 places.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
FORMULA
(n+4) / gcd(n, 4)^2 = A188134(n+4) / 4. - Michael Somos, Sep 12 2014
a(n) = a(n+16) = a(-n), a(2*n + 1) = 1 for all n in Z. - Michael Somos, Sep 13 2014
EXAMPLE
Fractions begin:
1/4, 5, 3/2, 7, 1/2, 9, 5/2, 11, 3/4, 13, 7/2, 15, 1, 17, 9/2, 19,
5/4, 21, 11/2, 23, 3/2, 25, 13/2, 27, 7/4, 29, 15/2, 31, 2, 33, 17/2, 35,
...
Numerators begin:
1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19,
5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 2, 33, 17, 35,
...
Periodic part = [4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1];
MATHEMATICA
a[n_] := (n+4)/GCD[n, 4]^2 // Denominator; Table[a[n], {n, 0, 100}]
(* or: *)
Table[{1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4}[[Mod[n, 16, 1]]], {n, 0, 100}]
PROG
(PARI) for(n=0, 100, print1(denominator((n+4)/gcd(n, 4)^2), ", ")) \\ G. C. Greubel, Aug 05 2018
(MAGMA) [Denominator((n+4)/Gcd(n, 4)^2): n in [0..100]]; // G. C. Greubel, Aug 05 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved