[go: up one dir, main page]

login
A214044 revision #11

A214044
Odd squarefree semiprimes n for which (n - d1)/(d1^2 - d1) = (d2^2 - d2)/(n - d2) = k, where d1 and d2 are the two prime factors of n and k is a natural number.
0
15, 21, 33, 39, 51, 57, 65, 69, 85, 87, 91, 93, 111, 123, 129, 133, 141, 145, 159, 177, 183, 185, 201, 205, 213, 217, 219, 237, 249, 259, 265, 267, 291, 301, 303, 305, 309, 321, 327, 339, 341, 365, 381, 393, 411, 417, 427, 445, 447, 451, 453, 469, 471, 481, 485, 489, 501, 505, 511, 515, 535, 545, 553, 565, 635
OFFSET
1,1
COMMENTS
All these numbers n are Fermat pseudoprimes (as odd squarefree semiprimes) for at least two bases 1 < b < n - 1.
It is interesting that all the numbers from the sequence above are Fermat pseudoprimes to base d2, d2 - 1 and d2 + 1.
LINKS
Eric Weisstein's World of Mathematics, Fermat Pseudoprime
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Marius Coman, Jul 02 2012
STATUS
editing