OFFSET
1,1
COMMENTS
Subsequence of A023198 (numbers n such that sigma(n)>=4n).
EXAMPLE
Number 27720 is in sequence because sigma(27720)/4 = 28080 = 360+27720 = 20+60+280+2310+4620+6930+13860 = 9+30+420+1540+1980+2772+3080+3465+5544+9240 = 1+2+3+4+5+6+7+8+10+11+12+14+15+18+21+22+24+28+33+35+36+40+42+44+45+55+56+63+66+70+72+77+84+88+90+99+105+110+120+126+132+140+154+165+168+180+198+210+220+231+252+264+308+315+330+385+396+440+462+495+504+616+630+660+693+770+792+840+924+990+1155+1260+1320+1386+1848+2520+3960 (summands are all divisors of 27720).
MAPLE
with(numtheory); with(combstruct);
A204831:=proc(i)
local S, R, Stop, Comb, c, d, k, m, n, s;
for n from 1 to i do
s:=sigma(n); c:=op(divisors(n));
if (modp(s, 4)=0 and 4*n<=s) then
S:=1/4*s-n; R:=select(m->m<=S, [c]); Stop:=false;
Comb:=iterstructs(Combination(R));
while not (finished(Comb) or Stop) do
Stop:=add(d, d=nextstruct(Comb))=S;
od;
if Stop then print(n); fi;
fi;
od;
end:
A204831(100000); # Paolo P. Lava, Jan 24 2012.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek (jaroslav.krizek(AT)atlas.cz), Jan 22 2012
STATUS
proposed