[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204831 revision #8

A204831
Numbers n whose divisors can be partitioned into four disjoint sets whose sums are all sigma(n)/4.
9
27720, 30240, 32760, 50400, 55440, 60480, 65520, 75600, 83160, 85680, 90720, 95760, 98280, 100800, 105840, 110880, 115920, 120120, 120960, 128520, 131040, 138600, 143640, 151200, 163800, 166320, 171360, 180180, 181440, 184800, 191520
OFFSET
1,1
COMMENTS
Subsequence of A023198 (numbers n such that sigma(n)>=4n).
EXAMPLE
Number 27720 is in sequence because sigma(27720)/4 = 28080 = 360+27720 = 20+60+280+2310+4620+6930+13860 = 9+30+420+1540+1980+2772+3080+3465+5544+9240 = 1+2+3+4+5+6+7+8+10+11+12+14+15+18+21+22+24+28+33+35+36+40+42+44+45+55+56+63+66+70+72+77+84+88+90+99+105+110+120+126+132+140+154+165+168+180+198+210+220+231+252+264+308+315+330+385+396+440+462+495+504+616+630+660+693+770+792+840+924+990+1155+1260+1320+1386+1848+2520+3960 (summands are all divisors of 27720).
MAPLE
with(numtheory); with(combstruct);
A204831:=proc(i)
local S, R, Stop, Comb, c, d, k, m, n, s;
for n from 1 to i do
s:=sigma(n); c:=op(divisors(n));
if (modp(s, 4)=0 and 4*n<=s) then
S:=1/4*s-n; R:=select(m->m<=S, [c]); Stop:=false;
Comb:=iterstructs(Combination(R));
while not (finished(Comb) or Stop) do
Stop:=add(d, d=nextstruct(Comb))=S;
od;
if Stop then print(n); fi;
fi;
od;
end:
A204831(100000); # Paolo P. Lava, Jan 24 2012.
CROSSREFS
Cf. A083207 (Zumkeller numbers-numbers n whose divisors can be partitioned into two disjoint sets whose sums are both sigma(n)/2), A204830 (numbers n whose divisors can be partitioned into three disjoint sets whose sums are all sigma(n)/3).
Sequence in context: A251235 A023198 A230608 * A345153 A190111 A068404
KEYWORD
nonn
AUTHOR
Jaroslav Krizek (jaroslav.krizek(AT)atlas.cz), Jan 22 2012
STATUS
proposed