[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191846 revision #3

A191846
Ordered sums 2*f+3*g, where f and g are Fibonacci numbers (A000045).
4
5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 21, 22, 25, 26, 28, 29, 30, 31, 32, 34, 35, 40, 41, 43, 45, 48, 49, 50, 51, 55, 57, 65, 66, 67, 69, 71, 73, 74, 77, 79, 81, 83, 89, 92, 104, 105, 106, 107, 108, 112, 113, 116, 118, 119, 125, 128, 131, 134, 144, 149
OFFSET
1,1
MATHEMATICA
c = 2; d = 3; f[n_] := Fibonacci[n];
g[n_] := c*f[n]; h[n_] := d*f[n];
t[i_, j_] := h[i] + g[j];
u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
v = Union[Flatten[u ]] (* A191846 *)
t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
v1 = Union[Flatten[u1 ]] (* A191847: 2f(i)-3*f(j) *)
g1[n_] := d*f[n]; h1[n_] := c*f[n];
t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
v2 = Union[Flatten[u2 ]] (* A191848: 3*f(i)-2(f(j) *)
v3 = Union[v, v2] (* A191849*)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling (ck6(AT)evansville.edu), Jun 17 2011
STATUS
proposed