[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182386 revision #56

A182386
a(0) = 1, a(n) = 1 - n * a(n-1).
10
1, 0, 1, -2, 9, -44, 265, -1854, 14833, -133496, 1334961, -14684570, 176214841, -2290792932, 32071101049, -481066515734, 7697064251745, -130850092279664, 2355301661033953, -44750731559645106, 895014631192902121, -18795307255050944540, 413496759611120779881
OFFSET
0,4
COMMENTS
Hankel transform is A055209.
LINKS
Shirali Kadyrov, Farukh Mashurov, Generalized continued fraction expansions for Pi and E, arXiv:1912.03214 [math.NT], 2019.
FORMULA
a(n+2) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = A001563(k+1) for k = 0, 1, ..., n.
E.g.f.: exp(x) / (1 + x).
a(n) = (-1)^n * A000166(n).
G.f.: 1/U(0) where U(k)= 1 - x + x*(k+1)/(1 + x*(k+1)/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 13 2012
E.g.f.: exp(x) / (1 + x) = 1/(1 - x^2/2 + x^3/(U(0) + 2*x)) where U(k)= k^2 + k*(4-x) - 2*x + 3 + x*(k+1)*(k+3)^2/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 16 2012
G.f.: 1/Q(0) where Q(k) =1 + 4*k*x - x^2*(2*k + 1)^2/( 1 + (4*k+2)*x - x^2*(2*k + 2)^2/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 10 2013
G.f.: 1/Q(0), where Q(k)= 1 + (k+1)^2*(x) - x/(1 - x*(k+1)^2/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
a(n) = (-1)^n*Gamma(n+1,-1)*exp(-1), where Gamma(a,x) is the incomplete gamma function. - Ilya Gutkovskiy, May 05 2016
0 = a(n)*(-a(n+1) +a(n+2) +a(n+3)) +a(n+1)*(+a(n+1) -2*a(n+2) -a(n+3)) +a(n+2)*(+a(n+2)) for all n>=0. - Michael Somos, Jun 26 2018
EXAMPLE
G.f. = 1 + x^2 - 2*x^3 + 9*x^4 - 44*x^5 + 265*x^6 - 1854*x^7 + 14833*x^8 + ...
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, 1-n*a(n-1)) end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 19 2015
MATHEMATICA
a[n_] := x D[1/x Exp[x], {x, n}] x^n Exp[-x]
Table[a[n] /. x -> 1, {n, 0, 20}] (* Gerry Martens , May 05 2016 *)
a[0] = 1; a[n_] := a[n] = 1 - n a[n - 1]; Table[a@ n, {n, 0, 22}] (* Michael De Vlieger, May 05 2016 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 1 - n * a(n-1))};
(Sage)
A182386 = lambda n: hypergeometric([-n, 1], [], 1)
print([simplify(A182386(n)) for n in range(23)]) # Peter Luschny, Oct 19 2014
(Magma) m:=35; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x)/(1+x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 11 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Apr 27 2012
STATUS
approved