[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177683 revision #19

A177683
a(n) = 6*a(n-1)-8*a(n-2) for n > 4; a(0)=191, a(1)=1587, a(2)=14161, a(3)=123004, a(4)=508152.
5
191, 1587, 14161, 123004, 508152, 2064880, 8324064, 33425344, 133959552, 536354560, 2146450944, 8587869184, 34355607552, 137430691840, 549739290624, 2198990209024, 8796026929152, 35184239902720, 140737223983104
OFFSET
0,1
COMMENTS
Related to Reverse and Add trajectory of 537 in base 2: a(n) = A077076(4*n+1)/6, i.e., one sixth of second quadrisection of A077076.
FORMULA
a(n) = 2*4^(n+5)-2017*2^(n-1) for n > 2.
G.f.: (191+441*x+6167*x^2+50734*x^3-116584*x^4) / ((1-2*x)*(1-4*x)).
G.f. for the sequence starting at a(3): 4*x^3*(30751-57468*x) / ((1-2*x)*(1-4*x)).
MATHEMATICA
Join[{191, 1587, 14161}, Transpose[NestList[{Last[#], 6Last[#]-8First[#]}&, {123004, 508152}, 20]][[1]]] (* Harvey P. Dale, Mar 06 2011 *)
CoefficientList[Series[(191 + 441 x + 6167 x^2 + 50734 x^3 - 116584 x^4)/((1 - 2 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2013 *)
LinearRecurrence[{6, -8}, {191, 1587, 14161, 123004, 508152}, 20] (* Harvey P. Dale, Oct 16 2019 *)
PROG
(PARI) {m=19; v=concat([191, 1587, 14161, 123004, 508152], vector(m-5)); for(n=6 , m, v[n]=6*v[n-1]-8*v[n-2]); v}
(Magma) [191, 1587, 14161] cat [2*4^(n+5)-2017*2^(n-1): n in [3..25]]; // Vincenzo Librandi, Sep 24 2013
CROSSREFS
Cf. A077076 (Reverse and Add trajectory of 537 in base 2), A177682, A177684, A177685.
Sequence in context: A107955 A264844 A061331 * A209549 A218595 A296580
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, May 12 2010
STATUS
approved