OFFSET
1,5
COMMENTS
Row sums are:
{1, 2, -11, 270, -39151, 18560242, -39369547651, 316649873125334,
-10469504736950236343, 1366047251880111590518042,...}.
The recursion sequence is an effort to get the q-Lah recursion.
LINKS
R. Parthasarathy, q-Fermionic Numbers and Their Roles in Some Physical Problems, arxiv:quant-ph/0403216
FORMULA
f(q,k)=(1 - (-q)^k)/(1 + q);q=2;;
e(n,k)= f(q, k + n - 1)*e(n - 1, k) + (-q)^(n + k - 2)e(n - 1, k - 1).
EXAMPLE
{1},
{1, 1},
{1, -13, 1},
{1, -127, 395, 1},
{1, 2635, 8857, -50645, 1},
{1, 113369, -1090125, -6392903, 25929899, 1},
{1, -9636493, -157388911, 2738123923, 11163788345, -53104434517, 1},
{1, -1647840047, 58603503067, 1708972394545, -20846248885229, -99301333604807, 435031527557803, 1},
{1, 561913455515, 38338804386633, -2452767292835141, -49931154777504079, 713057053683646995, 3124896325732724281, -14255113095014110549, 1},
{1, 383786890117769, -53483266744648765, -6541471733965121303, 292767105902855250491, 6970650157511849296049, -91628813770737106650605, -418026940631041685516743, 1868446183589689497791147, 1}
MATHEMATICA
Clear[e, n, k, q]; f[q_, k_] := (1 - (-q)^k)/(1 + q);
q = 2; e[n_, 0] := 0; e[n_, 1] := 1;
e[n_, n_] := 1; e[n_, k_] := 0 /; k >= n + 1;
e[n_, k_] := f[q, k + n - 1]*e[n - 1, k] + (-q)^(n + k - 2)e[n - 1, k - 1];
Table[Table[e[n, k], {k, 1, n}], {n, 1, 10}];
Flatten[%]
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Feb 09 2009
STATUS
editing