[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137234 revision #24

A137234
Expansion of g.f. 1/((1-x)^2*(1 - 3*x + 2*x^2 - x^3)).
6
1, 5, 16, 43, 107, 257, 607, 1422, 3318, 7727, 17978, 41810, 97214, 226014, 525439, 1221519, 2839710, 6601549, 15346765, 35676927, 82938821, 192809396, 448227496, 1042002541, 2422362052, 5631308596, 13091204252, 30433357644, 70748973053
OFFSET
0,2
COMMENTS
Previous name: Transform of A000292 without the initial 0 by the T_{0,0} transformation (see link).
Partial sums of A137229. - R. J. Mathar, Nov 04 2008
FORMULA
O.g.f: 1/((1-z)^2*(1 - 3*z + 2*z^2 - z^3)).
a(n) = -(n+3) + Sum_{j=0..2} (-1)^j*(4-j)*A095263(n-j). - G. C. Greubel, Apr 19 2021
MATHEMATICA
LinearRecurrence[{5, -9, 8, -4, 1}, {1, 5, 16, 43, 107}, 41] (* G. C. Greubel, Apr 19 2021 *)
PROG
(Magma) I:=[1, 5, 16, 43, 107]; [n le 5 select I[n] else 5*Self(n-1) -9*Self(n-2) +8*Self(n-3) -4*Self(n-4) +Self(n-5): n in [1..41]]; // G. C. Greubel, Apr 19 2021
(Sage)
@CachedFunction
def A095263(n): return sum(binomial(n+j+2, 3*j+2) for j in (0..n//2))
def A137234(n): return -(n+3) + sum( (-1)^j*(4-j)*A095263(n-j) for j in (0..2))
[A137234(n) for n in (0..40)] # G. C. Greubel, Apr 19 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 05 2008
STATUS
approved