[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117012 revision #3

A117012
Primes of the form n^2+5n+c (n>=0), where c=3 for even n and c=-3 for odd n.
0
3, 17, 47, 107, 173, 269, 503, 641, 809, 983, 1187, 1637, 2441, 2753, 4157, 4547, 4967, 5393, 5849, 6311, 6803, 7829, 8363, 9497, 11981, 12653, 13331, 14753, 15497, 17027, 22943, 26723, 29753, 31859, 32933, 38609, 39791, 42221, 47297, 49943, 58313
OFFSET
1,1
COMMENTS
Alternating Euler quadratic prime generating polynomial.
REFERENCES
Harvey Cohn, Advanced Number Theory,Dover, New York, 1962, page 155.
MATHEMATICA
f[n_] := If[Mod[n, 2] == 1, n^2 + 5*n - 3, n^2 + 5*n + 3] b = Flatten[Table[If[PrimeQ[f[n]] == True, f[n], {}], {n, 1, 100}]]
PROG
(PARI) m=250; for(n=1, m, k=n^2+5*n+3-6*(n%2); if(isprime(k), print1(k, ", ")))
CROSSREFS
Sequence in context: A106078 A087908 A152472 * A162291 A095697 A154304
KEYWORD
nonn
AUTHOR
Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Apr 16 2006
EXTENSIONS
Edited and extended by N. J. A. Sloane, Apr 17 2006
STATUS
approved