[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109091 revision #29

A109091
Expansion of (1 - eta(q)^5 / eta(q^5)) / 5 in powers of q.
14
1, -1, -2, 3, 1, 2, -6, -5, 7, -1, 12, -6, -12, 6, -2, 11, -16, -7, 20, 3, 12, -12, -22, 10, 1, 12, -20, -18, 30, 2, 32, -21, -24, 16, -6, 21, -36, -20, 24, -5, 42, -12, -42, 36, 7, 22, -46, -22, 43, -1, 32, -36, -52, 20, 12, 30, -40, -30, 60, -6, 62, -32, -42, 43, -12, 24, -66, -48, 44, 6, 72, -35, -72, 36, -2, 60, -72
OFFSET
1,3
LINKS
G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128. This is the expression B^5/C in the notation of p. 106. [Added by N. J. A. Sloane, Nov 13 2009]
FORMULA
G.f.: (1 - Product_{k>0} (1 - x^k)^5 / (1 - x^(5*k))) / 5 = Sum_{k>0} x^k * (1 - x^k)^2 * (1 + x^(6*k) - 4*x^(2*k) * (1 + x^k +x^(2*k))) / (1 - x^(5*k))^2.
-5*a(n) = A109064(n) unless n = 0.
a(n) = A284097(n) + A284103(n) - A284280(n) - A284281(n) = A284150(n) - A284152(n). - Seiichi Manyama, Apr 01 2017
EXAMPLE
G.f. = q - q^2 - 2*q^3 + 3*q^4 + q^5 + 2*q^6 - 6*q^7 - 5*q^8 + 7*q^9 - q^10 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, Sum[ d KroneckerSymbol[ 5, d], {d, Divisors@n}]]; (* Michael Somos, Apr 26 2015 *)
a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ q]^5 / QPochhammer[ q^5]) / 5, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, A = x * O(x^n); -1/5 * polcoeff( eta(x + A)^5 / eta(x^5 + A), n))};
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d * kronecker(5, d)))} /* Michael Somos, Mar 21 2008 */
(Ruby)
def s(k, m, n)
s = 0
(1..n).each{|i| s += i if n % i == 0 && i % k == m}
s
end
def A109091(n)
(1..n).map{|i| s(5, 1, i) + s(5, 4, i) - s(5, 2, i) - s(5, 3, i)}
end # Seiichi Manyama, Apr 01 2017
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Jun 18 2005
STATUS
reviewed