OFFSET
1,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128. This is the expression B^5/C in the notation of p. 106. [Added by N. J. A. Sloane, Nov 13 2009]
FORMULA
G.f.: (1 - Product_{k>0} (1 - x^k)^5 / (1 - x^(5*k))) / 5 = Sum_{k>0} x^k * (1 - x^k)^2 * (1 + x^(6*k) - 4*x^(2*k) * (1 + x^k +x^(2*k))) / (1 - x^(5*k))^2.
-5*a(n) = A109064(n) unless n = 0.
EXAMPLE
G.f. = q - q^2 - 2*q^3 + 3*q^4 + q^5 + 2*q^6 - 6*q^7 - 5*q^8 + 7*q^9 - q^10 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, Sum[ d KroneckerSymbol[ 5, d], {d, Divisors@n}]]; (* Michael Somos, Apr 26 2015 *)
a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ q]^5 / QPochhammer[ q^5]) / 5, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, A = x * O(x^n); -1/5 * polcoeff( eta(x + A)^5 / eta(x^5 + A), n))};
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d * kronecker(5, d)))} /* Michael Somos, Mar 21 2008 */
(Ruby)
def s(k, m, n)
s = 0
(1..n).each{|i| s += i if n % i == 0 && i % k == m}
s
end
def A109091(n)
(1..n).map{|i| s(5, 1, i) + s(5, 4, i) - s(5, 2, i) - s(5, 3, i)}
end # Seiichi Manyama, Apr 01 2017
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Jun 18 2005
STATUS
editing