[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103445 revision #2

A103445
Sum of the numbers of unitary divisors of the binomial coefficients C[n,k], k=0..n.
1
1, 2, 4, 6, 10, 14, 22, 22, 30, 46, 74, 94, 90, 102, 130, 170, 198, 222, 290, 350, 474, 650, 730, 734, 746, 838, 962, 1214, 2138, 2582, 1890, 1830, 2526, 3498, 4746, 6842, 5098, 6358, 8178, 10634, 8650, 9782, 13634, 14438, 17178, 20202, 22170, 21422, 16298
OFFSET
0,2
COMMENTS
Row sums of the triangle A103444.
EXAMPLE
a(3)=6 because the divisors of 1,3,3,1 are {1},{1,3},{1,3},{1}, respectively, all of which are unitary.
MAPLE
with(numtheory):unitdiv:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k], n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end: T:=proc(n, k) if k<=n then nops(unitdiv(binomial(n, k))) else 0 fi end: for n from 0 to 50 do b[n]:=[seq(T(n, k), k=0..n)] od: seq(sum(b[n][j], j=1..n+1), n=0..50);
CROSSREFS
Cf. A103444.
Sequence in context: A000065 A237758 A023499 * A001747 A048670 A371719
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 06 2005
STATUS
approved