[go: up one dir, main page]

login
A091663 revision #12

A091663
10-adic integer x=.....93380022607743740081787109375 satisfying x^3=x.
17
5, 7, 3, 9, 0, 1, 7, 8, 7, 1, 8, 0, 0, 4, 7, 3, 4, 7, 7, 0, 6, 2, 2, 0, 0, 8, 3, 3, 9, 8, 5, 9, 9, 0, 9, 8, 3, 0, 1, 9, 6, 7, 6, 7, 5, 6, 7, 5, 2, 4, 4, 9, 9, 9, 8, 8, 1, 6, 3, 1, 9, 1, 4, 0, 9, 4, 3, 3, 8, 7, 3, 9, 9, 0, 1, 0, 9, 4, 1, 6, 0, 7, 9, 1, 0, 3, 8, 1, 9, 8, 0, 8, 6, 2, 9, 9, 6, 4, 0, 6
OFFSET
0,1
COMMENTS
Let a,b be integers defined in A018247, A018248 satisfying a^2=a,b^2=b, obviously a^3=a,b^3=b; let c,d,e,f be integers defined in A091661, A063006, A091663, A091664 then c^3=c, d^3=d, e^3=e, f^3=f, c+d=1, a+e=1, b+f=1, b+c=a, d+f=e, a+f=c, a=f+1, b=e+1, cd=-1, af=-1, gh=-1 where -1=.....999999999
LINKS
FORMULA
For n > 0, a(n) = 9 - A018247(n) = A018248(n). - Seiichi Manyama, Jul 28 2017
MATHEMATICA
To calculate c, d, e, f use Mathematica algorithms for a, b and equations: c=a-b d=1-c e=b-1 f=a-1
CROSSREFS
Sequence in context: A200620 A195389 A345653 * A011316 A151753 A144543
KEYWORD
base,nonn
AUTHOR
Edoardo Gueglio (egueglio(AT)yahoo.it), Jan 28 2004
STATUS
proposed