[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080510 revision #65

A080510
Triangle read by rows: T(n,k) gives the number of set partitions of {1,...,n} with maximum block length k.
33
1, 1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 25, 20, 5, 1, 1, 75, 90, 30, 6, 1, 1, 231, 420, 175, 42, 7, 1, 1, 763, 2016, 1015, 280, 56, 8, 1, 1, 2619, 10024, 6111, 1890, 420, 72, 9, 1, 1, 9495, 51640, 38010, 12978, 3150, 600, 90, 10, 1, 1, 35695, 276980, 244035, 91938, 24024, 4950, 825, 110, 11, 1
OFFSET
1,5
COMMENTS
Row sums are A000110 (Bell numbers). Second column is A001189 (Degree n permutations of order exactly 2).
From Peter Luschny, Mar 09 2009: (Start)
Partition product of Product_{j=0..n-1} ((k + 1)*j - 1) and n! at k = -1, summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A036040.
Same partition product with length statistic is A008277.
Diagonal a(A000217) = A000012.
Row sum is A000110. (End)
From Gary W. Adamson, Feb 24 2011: (Start)
Construct an array in which the n-th row is the partition function G(n,k), where G(n,1),...,G(n,6) = A000012, A000085, A001680, A001681, A110038, A148092, with the first few rows
1, 1, 1, 1, 1, 1, 1, ... = A000012
1, 2, 4, 10, 26, 76, 232, ... = A000085
1, 2, 5, 14, 46, 166, 652, ... = A001680
1, 2, 5, 15, 51, 196, 827, ... = A001681
1, 2 5 15 52 202 869, ... = A110038
1, 2, 5 15 52 203 876, ... = A148092
...
Rows tend to A000110, the Bell numbers. Taking finite differences from the top, then reorienting, we obtain triangle A080510.
The n-th row of the array is the eigensequence of an infinite lower triangular matrix with n diagonals of Pascal's triangle starting from the right and the rest zeros. (End)
LINKS
J. Riordan, Letter, 11/23/1970. See second page of letter.
FORMULA
E.g.f. for k-th column: exp(exp(x)*GAMMA(k, x)/(k-1)!-1)*(exp(x^k/k!)-1). - Vladeta Jovovic, Feb 04 2005
From Peter Luschny, Mar 09 2009: (Start)
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n.
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,...,a_n such that
1*a_1 + 2*a_2 + ... + n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*...*a_n!),
f^a = (f_1/1!)^a_1*...*(f_n/n!)^a_n and f_n = Product_{j=0..n-1} (-1) = (-1)^n. (End)
From Ludovic Schwob, Jan 15 2022: (Start)
T(2n,n) = C(2n,n)*(A000110(n)-1/2) for n>0.
T(n,m) = C(n,m)*A000110(n-m) for 2m > n > 0. (End)
EXAMPLE
T(4,3) = 4 since there are 4 set partitions with longest block of length 3: {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}} and {{1,2,4},{3}}.
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 9, 4, 1;
1, 25, 20, 5, 1;
1, 75, 90, 30, 6, 1;
1, 231, 420, 175, 42, 7, 1;
1, 763, 2016, 1015, 280, 56, 8, 1;
1, 2619, 10024, 6111, 1890, 420, 72, 9, 1;
...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
end:
T:= (n, k)-> b(n, k) -b(n, k-1):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 20 2012
MATHEMATICA
<< DiscreteMath`NewCombinatorica`; Table[Length/@Split[Sort[Max[Length/@# ]&/@SetPartitions[n]]], {n, 12}]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*n!/i!^j/(n-i*j)!/j!, {j, 0, n/i}]]]; T[n_, k_] := b[n, k]-b[n, k-1]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *)
CROSSREFS
Columns k=1..10 give: A000012 (for n>0), A001189, A229245, A229246, A229247, A229248, A229249, A229250, A229251, A229252. - Alois P. Heinz, Sep 17 2013
T(2n,n) gives A276961.
Take differences along rows of A229223. - N. J. A. Sloane, Jan 10 2018
Sequence in context: A152570 A100537 A069605 * A378163 A350772 A350783
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Mar 22 2003
STATUS
editing