[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079403 revision #17

A079403
Let G(t) be the set of numbers between 2^(t-1) and 2^t-1, inclusive. There is a unique number a(t) in G(t) so that the denominator of the a(t)-th partial sum of the double harmonic series is divisible by smaller 2-powers than its neighbors.
1
3, 6, 13, 27, 54, 109, 219, 439, 879, 1759, 3518, 7037, 14075, 28151, 56303, 112606, 225212, 450424, 900848, 1801696, 3603393
OFFSET
2,1
COMMENTS
The n-th partial sum of double harmonic series is defined to be Sum_{1 <= k < l <= n} 1/(kl).
FORMULA
From Benoit Cloitre, Jan 24 2003: (Start)
a(n+1) - 2*a(n) = (a(n+1) mod 2);
a(n) = floor(c*2^n) where c = 1.718232... = 3/2 + Sum_{k>=2} (a(k+1) - 2*a(k))/2^k. (End)
EXAMPLE
a(3)=6 because Sum_{1 <= k < l <= 6} 1/(kl) = 203/90, 4 does not divide 90, while 4 divides the denominators of both Sum_{1 <= k < l <= 5} 1/(kl) = 15/8 and Sum_{1 <= k < l <= 7} 1/(kl) = 469/180.
MAPLE
sequ := proc(T) local A, i, n, t, psum, innersum; psum := 0; innersum := 0; A := {}; for t to T-1 do for n from 2^t to 2^(t+1)-1 do innersum := innersum+2^T/(n-1) mod 2^(2*T); psum := psum+2^T*innersum/n mod 2^(2*T); if psum mod 2^(2*T-t+1)=0 then A := A union {n}; end if; od; od; RETURN(A); end:
MATHEMATICA
nmax = 15; dhs = Array[HarmonicNumber[# - 1]/# &, 2^nmax] // Accumulate; Print["dhs finished"];
f[s_] := IntegerExponent[s // Denominator, 2];
a[2] = 3; a[n_] := a[n] = For[k = 2*a[n - 1], k <= 2^n - 1, k++, fk = f[dhs[[k]]]; If[f[dhs[[k-1]]] > fk && f[dhs[[k+1]]] > fk, Return[k]]];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 2, nmax}] (* Jean-François Alcover, Jan 22 2018 *)
CROSSREFS
Cf. A079404.
Sequence in context: A112306 A291753 A033129 * A065830 A055143 A092539
KEYWORD
more,nonn
AUTHOR
Jianqiang Zhao (jqz(AT)math.upenn.edu), Jan 06 2003
STATUS
proposed