[go: up one dir, main page]

login
A071910 revision #19

A071910
a(n) = t(n)*t(n+1)*t(n+2), where t() are the triangular numbers.
1
0, 18, 180, 900, 3150, 8820, 21168, 45360, 89100, 163350, 283140, 468468, 745290, 1146600, 1713600, 2496960, 3558168, 4970970, 6822900, 9216900, 12273030, 16130268, 20948400, 26910000, 34222500, 43120350, 53867268, 66758580, 82123650, 100328400, 121777920
OFFSET
0,2
COMMENTS
a(n) is also the number of three-dimensional cage assemblies such that the assembly is not a cube. See also A052149 for the 2 dimensional version and to A059827 for the non-exclusive version. - Alejandro Rodriguez, Oct 20 2020
FORMULA
a(n) = 18*A006542(n+3). - Vladeta Jovovic, Jun 14 2002
G.f.: 18*x*(1+3*x+x^2)/(1-x)^7. - Vladeta Jovovic, Jun 14 2002
a(n) = ((n+1)(n+2))^3/8 - sum(i=1, n+1, i^3) - Jon Perry, Feb 13 2004
a(n) = C(2+n, n)*C(3+n, 1+n)*C(4+n, 2+n) - Zerinvary Lajos, Jul 29 2005
a(n) = A059827(n+1) - A000537(n+1). - Michel Marcus, Oct 21 2015
PROG
(PARI) t(n) = n*(n+1)/2;
a(n) = t(n)*t(n+1)*t(n+2); \\ Michel Marcus, Oct 21 2015
CROSSREFS
Cf. A006542, (first differences of a(n) /18) A006414, (second differences of a(n) /18) A006322, (third differences of a(n) /18) A004068, (fourth differences of a(n) /18) A005891, (fifth differences of a(n) /18) A008706.
Sequence in context: A239581 A213350 A052507 * A121038 A341370 A004410
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 13 2002
STATUS
proposed