[go: up one dir, main page]

login
A068346 revision #44

A068346
a(n) = n'' = second arithmetic derivative of n.
49
0, 0, 0, 0, 4, 0, 1, 0, 16, 5, 1, 0, 32, 0, 6, 12, 80, 0, 10, 0, 44, 7, 1, 0, 48, 7, 8, 27, 80, 0, 1, 0, 176, 9, 1, 16, 92, 0, 10, 32, 72, 0, 1, 0, 112, 16, 10, 0, 240, 9, 39, 24, 92, 0, 108, 32, 96, 13, 1, 0, 96, 0, 14, 20, 640, 21, 1, 0, 156, 15, 1, 0, 220, 0, 16, 16, 176, 21, 1, 0, 368, 216
OFFSET
0,5
COMMENTS
a(2p) = 1 for any prime p implies p,p+2 form a twin prime pair. - Kevin J. Gomez, Aug 29 2017
LINKS
T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 2000 terms from T. D. Noe)
Victor Ufnarovski and Bo Ã…hlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003.
FORMULA
a(n) = A003415(A003415(n)).
a(A000040(n)) = 0; a(A157037(n)) = 1. - Reinhard Zumkeller, Feb 22 2009
MAPLE
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
a:= n-> d(d(n));
seq(a(n), n=0..100); # Alois P. Heinz, Aug 29 2017
MATHEMATICA
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[dn[dn[n]], {n, 100}] (T. D. Noe)
f[n_] := If[ Abs@ n < 2, 0, n*Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; Table[ f[ f[ n]], {n, 81}] (* Robert G. Wilson v, May 12 2012 *)
PROG
(Haskell)
a068346 = a003415 . a003415 -- Reinhard Zumkeller, Nov 10 2013
CROSSREFS
Cf. A003415 (arithmetic derivative of n), A099306 (third arithmetic derivative of n).
Column k=2 of A258651.
Sequence in context: A136448 A166318 A166317 * A348304 A006838 A061309
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Feb 28 2002
EXTENSIONS
More terms from T. D. Noe, Oct 12 2004
STATUS
editing