[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063024 revision #15

A063024
Reversion of y - y^2 - y^3 - y^4 - y^5.
0
0, 1, 1, 3, 11, 45, 196, 894, 4215, 20377, 100463, 503191, 2553291, 13097469, 67808104, 353851124, 1859313324, 9828998946, 52237988523, 278952216129, 1495976545546, 8053571710250, 43507491045810, 235784617161780
OFFSET
0,4
FORMULA
a(n)=sum(k=1..n-1, (sum(j=0..k, binomial(k,j)*sum(i=j..n-k+j-1, binomial(j,i-j)*binomial(k-j,n-3*(k-j)-i-1))))*binomial(n+k-1,n-1)/n, n>1. a(1)=1. [Vladimir Kruchinin, May 10 2011]
MATHEMATICA
CoefficientList[InverseSeries[Series[y - y^2 - y^3 - y^4 - y^5, {y, 0, 30}], x], x]
PROG
(Maxima)
a(n):=if n<2 then n else sum((sum(binomial(k, j)*sum(binomial(j, i-j)*binomial(k-j, n-3*(k-j)-i-1), i, j, n-k+j-1), j, 0, k))*binomial(n+k-1, n-1), k, 1, n-1)/n; [Vladimir Kruchinin, May 10 2011]
(PARI)
x='x+O('x^66);
gf=serreverse(x-sum(j=2, 6, x^j));
Vec(gf)
/* Joerg Arndt, May 12 2011 */
CROSSREFS
Sequence in context: A049166 A049172 A049155 * A217887 A151129 A151130
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Jul 05 2001.
STATUS
editing