OFFSET
0,5
COMMENTS
Number of partitions of n into odd parts such that if a number occurs as a part then so do all smaller positive odd numbers.
Number of different partial sums of 1+[1,3]+[1,5]+[1,7]+[1,9]+... E.g., a(6)=2 because we have 6=1+1+1+1+1+1=1+1+3+1. - Jon Perry, Jan 01 2004
Also number of partitions of n such that the largest part occurs exactly once and all the other parts occur exactly twice. Example: a(9)=4 because we have [9],[7,1,1],[5,2,2] and [3,2,2,1,1]. - Emeric Deutsch, Mar 08 2006
Number of partitions (d1,d2,...,dm) of n such that 0 < d1/1 < d2/2 < ... < dm/m. - Seiichi Manyama, Mar 17 2018
For Emeric Deutsch's comment above, (1) this appears to be an alternately equal case of A122130, (2) the ordered version (compositions) is A239327, (3) allowing any length gives A351006, (4) the even-length version is A351007. - Gus Wiseman, Feb 25 2022
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.13).
Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 31.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
Leila A. Dragonette, Some asymptotic formulas for the mock theta series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952) 474-500.
George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80.
FORMULA
G.f.: psi(q) = Sum_{n>=1} q^(n^2) / ( (1-q)*(1-q^3)*...*(1-q^(2*n-1)) ).
G.f.: Sum_{k>=1} q^k*Product_{j=1..k-1} (1+q^(2*j)) (see the Fine reference, p. 58, Eq. (26,53)). - Emeric Deutsch, Mar 08 2006
a(n) ~ exp(Pi*sqrt(n/6)) / (4*sqrt(n)). - Vaclav Kotesovec, Jun 09 2019
EXAMPLE
q + q^2 + q^3 + 2*q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 3*q^8 + 4*q^9 + ...
From Seiichi Manyama, Mar 17 2018: (Start)
n | Partition (d1,d2,...,dm) | (d1/1, d2/2, ... , dm/m)
--+--------------------------+-------------------------
1 | (1) | (1)
2 | (2) | (2)
3 | (3) | (3)
4 | (4) | (4)
| (1, 3) | (1, 3/2)
5 | (5) | (5)
| (1, 4) | (1, 2)
6 | (6) | (6)
| (1, 5) | (1, 5/2)
7 | (7) | (7)
| (1, 6) | (1, 3)
| (2, 5) | (2, 5/2)
8 | (8) | (8)
| (1, 7) | (1, 7/2)
| (2, 6) | (2, 3)
9 | (9) | (9)
| (1, 8) | (1, 4)
| (2, 7) | (2, 7/2)
| (1, 3, 5) | (1, 3/2, 5/3) (End)
MAPLE
f:=n->q^(n^2)/mul((1-q^(2*i+1)), i=0..n-1); add(f(i), i=1..6);
# second Maple program:
b:= proc(n, i) option remember; (s-> `if`(n>s, 0, `if`(n=s, 1,
b(n, i-1)+b(n-i, min(n-i, i-1)))))(i*(i+1)/2)
end:
a:= n-> `if`(n=0, 0, add(b(j, min(j, n-2*j-1)), j=0..iquo(n, 2))):
seq(a(n), n=0..80); # Alois P. Heinz, May 17 2018
MATHEMATICA
Series[Sum[q^n^2/Product[1-q^(2k-1), {k, 1, n}], {n, 1, 10}], {q, 0, 100}]
(* Second program: *)
b[n_, i_] := b[n, i] = Function[s, If[n > s, 0, If[n == s, 1, b[n, i - 1] + b[n - i, Min[n - i, i - 1]]]]][i*(i + 1)/2];
a[n_] := If[n==0, 0, Sum[b[j, Min[j, n-2*j-1]], {j, 0, Quotient[n, 2]}]];
Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 17 2018, after Alois P. Heinz *)
PROG
(PARI) { n=20; v=vector(n); for (i=1, n, v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2, n, k=length(v[i-1]); for (j=1, k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]+2*i-1)); c=vector(n); for (i=1, n, for (j=1, 2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
(PARI) {a(n) = local(t); if(n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k-1) / (1 - x^(2*k-1)) + O(x^(n-(k-1)^2+1))), n))} /* Michael Somos, Sep 04 2007 */
CROSSREFS
Cf. A003475.
KEYWORD
nonn,easy
AUTHOR
Dean Hickerson, Dec 19 1999
EXTENSIONS
More terms from Emeric Deutsch, Mar 08 2006
STATUS
editing