[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052705 revision #44

A052705
Expansion of 2*x^2/(1 - 2*x - 2*x^2 + sqrt(1 - 4*x - 4*x^2)).
10
0, 0, 1, 2, 7, 24, 89, 342, 1355, 5492, 22669, 94962, 402703, 1725424, 7458065, 32482798, 142414867, 628037612, 2783922197, 12397342698, 55436525591, 248819728360, 1120584933401, 5062273384422, 22933667676187
OFFSET
0,4
COMMENTS
Number of underdiagonal paths from (0,0) to the line x=n-2, using only steps R=(1,0), V=(0,1) and D=(2,1). E.g., a(4)=7 because we have RR, RRV, RVR, D, RVRV, RRVV and DV. - Emeric Deutsch, Dec 21 2003
LINKS
C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
FORMULA
Recurrence: a(1)=0, a(2)=1, a(3)=2, 4*(n+1)*a(n) + (10+8*n)*a(n+1) + (2+3*n)*a(n+2) + (-n-3)*a(n+3) = 0.
a(n+2) = Sum_{k=0..n} sum{j=0..n} C(j,n-j)*A001263(j,k). - Paul Barry, Jun 30 2009
a(n) = Sum_{j=1..floor(n/2)} C(2*n-2*j,n)*C(n,j-1)/(n-j). - Vladimir Kruchinin, Jan 16 2015
G.f.: A(x) satisfies A(x) = C(x*(1+A(x)))^2, where x*C(x) is g.f. of Catalan numbers. - Vladimir Kruchinin, Jan 16 2015
a(n) = C(2*n-2,n)*3F2((2-n)/2,(3-n)/2,-n;3/2-n,2-n;-1)/(n-1), n>1. - Benedict W. J. Irwin, Sep 13 2016
MAPLE
spec := [S, {S=Prod(B, B), C=Prod(S, Z), B=Union(S, C, Z)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(2x^2)/(1-2x-2x^2+Sqrt[1-4x-4x^2]), {x, 0, 30}], x] (* Harvey P. Dale, Dec 16 2014 *)
Join[{0, 0}, Table[(Binomial[2(m-1), m]HypergeometricPFQ[{(2-m)/2, (3-m)/2, -m}, {3/2-m, 2-m}, -1])/(m-1), {m, 2, 20}]] (* Benedict W. J. Irwin, Sep 13 2016 *)
PROG
(Maxima)
a(n):=(sum(binomial(2*n-2*j, n)*binomial(n, j-1)/(n-j), j, 1, n/2)); /* Vladimir Kruchinin, Jan 16 2015 */
CROSSREFS
Row sums of A071945, cf. A000108.
Sequence in context: A151293 A122446 A150390 * A150391 A150392 A150393
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Emeric Deutsch, Mar 07 2004
STATUS
approved