OFFSET
0,1
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (See Corollary 1 (ix)).
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (3,-1)
FORMULA
a(n) = Fib(2n+3). a(n) = 3a(n-1) - a(n-2).
G.f.: (2-x)/(1-3x+x^2). [Philippe Deléham, Nov 16 2008]
a(n) = [(3/2)+(1/2)*sqrt(5)]^n+(2/5)*[(3/2)+(1/2)*sqrt(5)]^n*sqrt(5)-(2/5)*[(3/2)-(1/2)*sqrt(5)]^n *sqrt(5)+[(3/2)-(1/2)*sqrt(5)]^n, with n>=0. [Paolo P. Lava, Nov 20 2008]
MATHEMATICA
LinearRecurrence[{3, -1}, {2, 5}, 40] (* Vincenzo Librandi, Jul 12 2015 *)
PROG
(MAGMA) [Fibonacci(2*n+3): n in [0..40]]; // Vincenzo Librandi, Jul 12 2015
(PARI) pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(50, 2, 5) \\ Colin Barker, Jul 27 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved