OFFSET
1,2
COMMENTS
Sum the n-permutations having at least 1 cycle of length >= i for all i >= 1. A000142 + A033312 + A066052 + A202364 + ... The summation is precisely that indicated in the title since each permutation whose longest cycle = i is counted i times. - Geoffrey Critzer, Jan 09 2013
REFERENCES
S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 183.
R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 358.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..450 (first 142 terms from Thomas Dybdahl Ahle)
Ph. Flajolet and A. Odlyzko, Singularity analysis of generating functions, p. 22.
FORMULA
E.g.f.: Sum_{k>=0} (1/(1-x) - exp(Sum_{j=1..k} x^j/j)).
a(n) = f(n, 0, n, n!) where f(L, r, n, m) = m*r if r >= l, otherwise Sum_{k=0..L-1} (f(k, max(L-k,r), n-1, m/n) + (n-L)*f(L, r, n-1, m/n)). - Thomas Dybdahl Ahle, Aug 15 2011
a(n) = Sum_{k=1..n} k * A126074(n,k). - Alois P. Heinz, May 17 2016
MAPLE
b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!*
b(n-j, max(m, j))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=1..25); # Alois P. Heinz, May 14 2016
MATHEMATICA
kmax = 19; gf[x_] = Sum[ 1/(1-x) - 1/(E^((x^(1+k)*Hypergeometric2F1[1+k, 1, 2+k, x])/ (1+k))*(1-x)), {k, 0, kmax}];
a[n_] := n!*Coefficient[Series[gf[x], {x, 0, kmax}], x^n]; Array[a, kmax]
(* Jean-François Alcover, Jun 22 2011, after e.g.f. *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joe Keane (jgk(AT)jgk.org)
EXTENSIONS
More terms from Vladeta Jovovic, Sep 19 2002
More terms from Thomas Dybdahl Ahle, Aug 15 2011
STATUS
approved