[go: up one dir, main page]

login
A006839 revision #35

A006839
Minimum of largest partial quotient of continued fraction for k/n, (k,n) = 1.
(Formerly M0164)
2
1, 1, 1, 2, 1, 4, 2, 1, 3, 2, 2, 2, 1, 3, 2, 3, 2, 2, 2, 4, 1, 3, 3, 2, 2, 2, 2, 4, 2, 2, 2, 3, 3, 1, 3, 3, 2, 4, 3, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 5, 1, 2, 3, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 3, 2, 3, 2, 3, 3, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2
OFFSET
1,4
COMMENTS
Consider the continued fraction [0,c_1,c_2,...,c_m] of k/n, with k<n, c_m=1, and gcd(k,n)=1. Let f(k,n) be the maximum of the c_i. Then a(n) is the minimum value of f(k,n). This differs from A141822 only in the requirement that c_m=1. - Sean A. Irvine, Aug 12 2017
REFERENCES
Jeffrey Shallit, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. Niederreiter, Dyadic fractions with small partial quotients, Monat. f. Math., 101 (1986), 309-315.
CROSSREFS
Cf. A141822.
Sequence in context: A013942 A187816 A088423 * A268267 A205395 A367647
KEYWORD
nonn
EXTENSIONS
More terms from David W. Wilson
STATUS
approved