OFFSET
1,5
COMMENTS
For m < n, the maximal number of nonattacking queens that can be placed on the n by m rectangular toroidal chessboard is gcd(m,n), except in the case m=3, n=6.
The determinant of the matrix of the first n rows and columns is A001088(n). [Smith, Mansion] - Michael Somos, Jun 25 2012
Imagine a torus having regular polygonal cross-section of m sides. Now, break the torus and twist the free ends, preserving rotational symmetry, then reattach the ends. Let n be the number of faces passed in twisting the torus before reattaching it. For example, if n = m, then the torus has exactly one full twist. Do this for arbitrary m and n (m > 1, n > 0). Now, count the independent, closed paths on the surface of the resulting torus, where a path is "closed" if and only if it returns to its starting point after a finite number of times around the surface of the torus. Conjecture: this number is always gcd(m,n). NOTE: This figure constitutes a group with m and n the binary arguments and gcd(m,n) the resulting value. Twisting in the reverse direction is the inverse operation, and breaking & reattaching in place is the identity operation. - Jason Richardson-White, May 06 2013
Regarded as a triangle, table of gcd(n - k +1, k) for 1 <= k <= n. - Franklin T. Adams-Watters, Oct 09 2014
The n-th row of the triangle is 1,...,1, if and only if, n + 1 is prime. - Alexandra Hercilia Pereira Silva, Oct 03 2020
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., 1994, ch. 4.
D. E. Knuth, The Art of Computer Programming, Addison-Wesley, section 4.5.2.
LINKS
T. D. Noe, First 100 antidiagonals of array, flattened
Grant Cairns, Queens on Non-square Tori, El. J. Combinatorics, N6, 2001.
Marc Chamberland, Factored matrices can generate combinatorial identities, Linear Algebra and its Applications, Volume 438, Issue 4, 2013, pp. 1667-1677.
Warren P. Johnson, An LDU Factorization in Elementary Number Theory, Mathematics Magazine, Vol. 76, No. 5 (Dec., 2003), pp. 392-394.
P. Mansion, On an Arithmetical Theorem of Professor Smith's, Messenger of Mathematics, (1878), pp. 81-82.
Kival Ngaokrajang, Pattern of GCD(x,y) > 1 for x and y = 1..60. Non-isolated values larger than 1 (polyomino shapes) are colored.
Marcelo Polezzi, A Geometrical Method for Finding an Explicit Formula for the Greatest Common Divisor, The American Mathematical Monthly, Vol. 104, No. 5 (May, 1997), pp. 445-446.
H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc. 7 (1875-1876), pp. 208-212.
FORMULA
Multiplicative in both parameters with a(p^e, m) = gcd(p^e, m). - David W. Wilson, Jun 12 2005
T(n, k) = A(n - k + 1, k) = gcd(n - k + 1, k), n >= 1, k = 1..n. See a comment above and the Mathematica program. - Wolfdieter Lang, May 12 2018
Dirichlet generating function: Sum_{n>=1} Sum_{k>=1} gcd(n, k)/n^s/k^c = zeta(s)*zeta(c)*zeta(s + c - 1)/zeta(s + c). - Mats Granvik, Feb 13 2021
The LU decomposition of this square array = A051731 * transpose(A054522) (see Johnson (2003) or Chamberland (2013), p. 1673). - Peter Bala, Oct 15 2023
EXAMPLE
The array A begins:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]
[1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1]
[1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4]
[1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1]
[1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2]
[1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1]
[1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8]
[1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1]
[1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1]
[1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 4]
...
The triangle T begins:
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1: 1
2: 1 1
3: 1 2 1
4: 1 1 1 1
5: 1 2 3 2 1
6: 1 1 1 1 1 1
7: 1 2 1 4 1 2 1
8: 1 1 3 1 1 3 1 1
9: 1 2 1 2 5 2 1 2 1
10: 1 1 1 1 1 1 1 1 1 1
11: 1 2 3 4 1 6 1 4 3 2 1
12: 1 1 1 1 1 1 1 1 1 1 1 1
13: 1 2 1 2 1 2 7 2 1 2 1 2 1
14: 1 1 3 1 5 3 1 1 3 5 1 3 1 1
15: 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1
... - Wolfdieter Lang, May 12 2018
MAPLE
a:=(n, k)->gcd(n-k+1, k): seq(seq(a(n, k), k=1..n), n=1..15); # Muniru A Asiru, Aug 26 2018
MATHEMATICA
Table[ GCD[x - y + 1, y], {x, 1, 15}, {y, 1, x}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)
PROG
(PARI) {A(n, m) = gcd(n, m)}; /* Michael Somos, Jun 25 2012 */
(GAP) Flat(List([1..15], n->List([1..n], k->Gcd(n-k+1, k)))); # Muniru A Asiru, Aug 26 2018
CROSSREFS
KEYWORD
AUTHOR
STATUS
editing