[go: up one dir, main page]

login
A373074
Number of partitions of n such that (smallest part) > 3*(number of parts).
4
1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 11, 11, 13, 14, 16, 17, 20, 21, 24, 26, 29, 31, 35, 37, 41, 44, 48, 51, 56, 59, 64, 68, 74, 78, 85, 90, 98, 104, 113, 120, 131, 139, 151, 161, 175, 186, 202, 215, 233, 248, 268, 285, 308, 327, 352, 374, 402, 426, 457
OFFSET
0,15
FORMULA
G.f.: Sum_{k>=0} x^(3*k^2+k)/Product_{j=1..k} (1-x^j).
MATHEMATICA
Join[{1}, Table[Count[IntegerPartitions[n], _?(#[[-1]]>3*Length[#]&)], {n, 80}]] (* Harvey P. Dale, Aug 15 2024 *)
PROG
(PARI) my(N=80, x='x+O('x^N)); Vec(sum(k=0, N, x^(3*k^2+k)/prod(j=1, k, 1-x^j)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 22 2024
STATUS
approved