[go: up one dir, main page]

login
A373032
Expansion of Sum_{k>=1} (-1)^(k+1) * k^2 * x^(k*(k+1)) / (1 - x^k).
1
0, 1, 1, 1, 1, -3, 1, -3, 1, -3, 1, 6, 1, -3, 10, -3, 1, 6, 1, -19, 10, -3, 1, -10, 1, -3, 10, -19, 1, 31, 1, -19, 10, -3, 26, -10, 1, -3, 10, 6, 1, -30, 1, -19, 35, -3, 1, -46, 1, 22, 10, -19, 1, -30, 26, 30, 10, -3, 1, -21, 1, -3, 59, -19, 26, -30, 1, -19, 10, 71
OFFSET
1,6
FORMULA
a(n) = Sum_{d|n, d < sqrt(n)} (-1)^(d+1) * d^2.
MATHEMATICA
nmax = 70; CoefficientList[Series[Sum[(-1)^(k + 1) k^2 x^(k (k + 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 20 2024
STATUS
approved