[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371887
a(1) = 1; for n > 1, a(n) is the smallest positive integer k such that the digits of 2^k contain 2^a(n-1) as a proper substring.
2
1, 5, 15, 507
OFFSET
1,2
COMMENTS
From David A. Corneth, Apr 11 2024: (Start)
This sequence is well defined as A030000 is well defined; every finite string of digits is contained in some power of 2.
An upper bound for a(n), n > 1, can be found by solving 2^k == 2^a(n-1) (mod 10^m) where m is the number of digits of 2^a(n-1) (cf. A034887). This gives a(n) <= k = a(n-1) + 4*5^(m-1) (cf. A005054). So a(5) <= 507 + 4*5^152, which is about 7*10^106. (End)
LINKS
Brady Haran, Apocalyptic Numbers, Numberphile video, 2024.
EXAMPLE
a(2) is the smallest k > 0 such that the digits of 2^k contain 2^a(1) = 2^1 = 2 as a proper substring, so a(2) = 5. (2^5 = 32.)
a(3) is the smallest k > 0 such that the digits of 2^k contain 2^a(2) = 32 as a proper substring, so a(3) = 15. (2^15 = 32768.)
MATHEMATICA
k = 0; Rest@ NestList[(While[SequenceCount[IntegerDigits[2^k], IntegerDigits[2^#]] == 0, k++]; k++; k - 1) &, 1, 4] (* Michael De Vlieger, Apr 19 2024 *)
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Adam Vulic, Apr 11 2024
STATUS
approved