[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371513
a(n) is the smallest number m with n divisors d such that d^m mod m = d.
2
1, 2, 6, 42, 30, 105, 910, 561, 1365, 5005, 5565, 11305, 36465, 140505, 239785, 41041, 682465, 873145, 185185, 418285, 1683969, 2113665, 5503785, 1242241, 6697405, 8549905, 31932901, 11996985, 31260405, 30534805, 47031061, 825265, 27265161, 32306365, 55336645, 21662641
OFFSET
0,2
EXAMPLE
a(0) = 1 with divisors {};
a(1) = 2 with divisor {1};
a(2) = 6 with divisors {1, 3};
a(3) = 42 with divisors {1, 7, 21};
a(4) = 30 with divisors {1, 6, 10, 15};
a(5) = 105 with divisors {1, 7, 15, 21, 35};
a(6) = 910 with divisors {1, 35, 65, 91, 130, 455};
a(7) = 561 with divisors {1, 3, 11, 17, 33, 51, 187};
a(8) = 1365 with divisors {1, 13, 21, 91, 105, 195, 273, 455};
a(9) = 5005 with divisors {1, 11, 55, 65, 77, 143, 385, 715, 1001};
a(10) = 5565 with divisors {1, 7, 15, 21, 35, 105, 265, 371, 1113, 1855};
a(11) = 11305 with divisors {1, 17, 19, 35, 85, 119, 323, 595, 665, 1615, 2261}.
MATHEMATICA
f[n_] := DivisorSum[n, 1 &, PowerMod[#, n, n] == # &]; seq[max_] := Module[{t = Table[0, {max}], c = 0, n = 1, i}, While[c < max, i = f[n] + 1; If[i <= max && t[[i]] == 0, c++; t[[i]] = n]; n++]; t]; seq[18] (* Amiram Eldar, Apr 11 2024 *)
PROG
(Python)
from sympy import divisors
from itertools import count, islice
def f(n, divs): return sum(1 for d in divs if pow(d, n, n) == d%n)
def agen(verbose=False): # generator of terms
adict, n = dict(), 0
for k in count(1):
divs = divisors(k)[1:]
if len(divs) < n: continue
v = f(k, divs)
if v not in adict:
adict[v] = k
if verbose: print("FOUND", v, k)
while n in adict: yield adict[n]; n += 1
print(list(islice(agen(), 15))) # Michael S. Branicky, Apr 10 2024, updated Apr 17 2024 after Jon E. Schoenfield
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(12)-a(25) from Michael S. Branicky, Apr 10 2024
a(26)-a(35) from Jon E. Schoenfield, Apr 10 2024
STATUS
approved