[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371201
a(n) = Sum_{k=prime(n)..prime(n+1)-1} k, with a(0) = 1.
13
1, 2, 7, 11, 34, 23, 58, 35, 82, 153, 59, 201, 154, 83, 178, 297, 333, 119, 381, 274, 143, 453, 322, 513, 740, 394, 203, 418, 215, 442, 1673, 514, 801, 275, 1435, 299, 921, 957, 658, 1017, 1053, 359, 1855, 383, 778, 395, 2454, 2598, 898, 455, 922, 1413, 479, 2455, 1521, 1557, 1593
OFFSET
0,2
COMMENTS
The sequence can be obtained graphically using the following grid walk rules. From an origin the first movement iteration consists of moving 1 unit in any direction. The n-th movement iteration consists of moving in the same direction n units. If n is a prime number, the movement iteration consists of first changing the movement direction by 90 degrees and then moving n units in the new direction. If n is a nonprime number, the movement iteration consists of moving n units in the same direction as the previous movement iteration. The sequence is obtained by measuring the length of each 90-degree turn.
a(0) is the length of the grid segment before doing any 90-degree turns and a(1) is the length of the first 90-degree turn.
LINKS
FORMULA
For n > 0, a(n) = A138383(n) - (prime(n+1) - prime(n)).
a(n) = binomial(prime(n+1), 2) - Sum_{k=0..n-1} a(k). - David A. Corneth, Mar 15 2024
a(n) = prime(n) + A054265(n), for n >= 1. - Michel Marcus, Mar 15 2024
a(n) = (prime(n+1)-prime(n))*(prime(n+1)+prime(n)-1)/2 for n>=1. - Chai Wah Wu, Jun 01 2024
EXAMPLE
a(0) = 1.
a(1) = 2.
a(2) = 3 + 4 = 7.
a(3) = 5 + 6 = 11.
a(4) = 7 + 8 + 9 + 10 = 34.
a(5) = 11 + 12 = 23.
a(6) = 13 + 14 + 15 + 16 = 58.
a(7) = 17 + 18 = 35.
The natural numbers are summed in groups where each prime begins a new group,
primes v v v v
1 2 3 4 5 6 7 8 9 10 ...
\-/ \-/ \-----/ \-----/ \-------------/
a(n) = 1 2 7 11 34
n = 0 1 2 3 4
MAPLE
ithprime(0):=1:
a:= n-> ((j, k)-> (k-1+j)*(k-j)/2)(map(ithprime, [n, n+1])[]):
seq(a(n), n=0..56); # Alois P. Heinz, Mar 16 2024
MATHEMATICA
Join[{1}, Table[Prime[n]+(Prime[n+1]+Prime[n])*(Prime[n+1]-Prime[n]-1)/2, {n, 56}]] (* James C. McMahon, Apr 20 2024 *)
PROG
(PARI)
first(n) = {
my(res = primes(n), t = 0);
for(i = 1, n,
res[i] = binomial(res[i], 2) - t;
t+=res[i];
);
res
} \\ David A. Corneth, Mar 16 2024
(Python)
from sympy import nextprime, prime
def A371201(n):
if n == 0: return 1
q = nextprime(p:=prime(n))
return (q-p)*(p+q-1)>>1 # Chai Wah Wu, Jun 01 2024
CROSSREFS
Cf. A008837 (partial sums).
Sequence in context: A284354 A228076 A123151 * A026133 A026162 A025189
KEYWORD
nonn,easy
AUTHOR
Raul Prisacariu, Mar 15 2024
EXTENSIONS
More terms from Michel Marcus, Mar 15 2024
STATUS
approved