Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Oct 24 2024 05:33:50
%S 1,4,22,128,777,4872,31330,205560,1370868,9266104,63343006,437183260,
%T 3042337215,21323543252,150395596016,1066637271424,7602188660799,
%U 54422262148632,391146728466980,2821396586367568,20417766975784066,148200184917042112
%N G.f. A(x) satisfies A(x) = (1 + x*A(x)^(3/4) / (1-x))^4.
%F a(n) = 4 * Sum_{k=0..n} binomial(n-1,n-k) * binomial(3*k+4,k)/(3*k+4).
%F G.f.: A(x) = B(x)^4 where B(x) is the g.f. of A307678.
%F a(n) ~ 9 * 31^(n + 1/2) / (sqrt(Pi) * n^(3/2) * 2^(2*n + 3)). - _Vaclav Kotesovec_, Mar 29 2024
%F D-finite with recurrence 2*(n+2)*(2*n+3)*a(n) +(-55*n^2-74*n-15)*a(n-1) +6*(37*n^2-46*n-4)*a(n-2) -(295*n-319)*(n-3)*a(n-3) +124*(n-3)*(n-4)*a(n-4)=0. - _R. J. Mathar_, Oct 24 2024
%p A370695 := proc(n)
%p 4*add(binomial(n-1,n-k)*binomial(3*k+4,k)/(3*k+4),k=0..n) ;
%p end proc:
%p seq(A370695(n),n=0..80) ; #_R. J. Mathar_, Oct 24 2024
%o (PARI) a(n) = 4*sum(k=0, n, binomial(n-1, n-k)*binomial(3*k+4, k)/(3*k+4));
%Y Cf. A045902, A062109, A371379, A371486, A371517.
%Y Cf. A270386, A307678, A371516.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Mar 27 2024