[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370625
Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^3) )^n.
0
1, 0, 0, 3, 4, 5, 27, 63, 116, 354, 945, 2123, 5563, 14846, 36519, 93083, 244068, 622013, 1590318, 4131265, 10658969, 27440808, 71127683, 184324461, 476969939, 1237420755, 3213687698, 8343223779, 21682184311, 56400917786, 146742491187, 381991981659
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(n+k-1,k) * binomial(n-2*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^3) / (1-x) ).
PROG
(PARI) a(n, s=3, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));
CROSSREFS
Cf. A054514.
Sequence in context: A126896 A334225 A123957 * A085285 A282250 A254865
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 01 2024
STATUS
approved