[go: up one dir, main page]

login
A377611
a(n) is the number of iterations of x -> 2*x - 5 until (# composites reached) = (# primes reached), starting with prime(n+4).
1
25, 1, 19, 1, 11, 15, 1, 1, 1, 1, 13, 9, 3, 1, 1, 21, 1, 1, 1, 11, 1, 7, 1, 1, 1, 1, 1, 11, 17, 1, 3, 1, 1, 1, 1, 1, 13, 1, 1, 1, 5, 1, 1, 1, 3, 1, 3, 1, 1, 1, 9, 9, 1, 1, 1, 15, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 3, 3, 1, 3, 1, 1, 1, 7, 1, 1, 3
OFFSET
1,1
COMMENTS
For a guide to related sequences, see A377609.
EXAMPLE
Starting with prime(5) = 11, we have 2*11-5 = 17, then 2*17-5 = 31, etc., resulting in a chain 11, 17, 29, 53, 101, 197, 389, 773, 1541, 3077, 6149, 12293, 24581, 49157, 98309, 196613, 393221, 786437, 1572869, 3145733, 6291461, 12582917, 25165829, 50331653, 100663301, 201326597 having 13 primes and 13 composites. Since every initial subchain has fewer composites than primes, a(1) = 26-1 = 25.
MATHEMATICA
chain[{start_, u_, v_}] := If[CoprimeQ[u, v] && start*u + v != start,
NestWhile[Append[#, u*Last[#] + v] &, {start}, !
Count[#, _?PrimeQ] == Count[#, _?(! PrimeQ[#] &)] &], {}];
chain[{Prime[5], 2, -5}]
Map[Length[chain[{Prime[#], 2, -5}]] &, Range[5, 100]] - 1
(* Peter J. C. Moses, Oct 31 2024 *)
CROSSREFS
Cf. A377609.
Sequence in context: A040645 A040646 A040647 * A126647 A040648 A272129
KEYWORD
nonn,changed
AUTHOR
Clark Kimberling, Nov 05 2024
STATUS
approved