Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Nov 15 2024 09:06:17
%S 15,490,21637,1121505,3913864295,1131238503938606,78801255302666615,
%T 5589233202595404488,29349508915133986374841,
%U 2163909235608484556362424,913865816485680423486405066750,191623400974625892978847721669762887224010
%N Number of partitions of cuban primes.
%C Number of partitions of prime numbers that are the difference of two consecutive cubes.
%C Number of partitions of primes p such that p=(3*k^2 + 1)/4 for some integer k (A121259).
%H Robert Israel, <a href="/A377045/b377045.txt">Table of n, a(n) for n = 1..153</a>
%F a(n) = A000041(A002407(n)).
%F a(n) = A000041((3*A121259(n)^2 + 1)/4).
%p R:= NULL: count:= 0:
%p for i from 1 while count < 30 do
%p p:= (i+1)^3 - i^3;
%p if isprime(p) then count:= count+1; v:= combinat:-numbpart(p); R:= R,v; fi
%p od:
%p R; # _Robert Israel_, Nov 14 2024
%t PartitionsP[Select[Table[(3k^2 + 1)/4,{k,50}],PrimeQ]]
%Y Cf. A000041, A002407, A121259.
%K nonn
%O 1,1
%A _Paul F. Marrero Romero_, Oct 14 2024