[go: up one dir, main page]

login
A376659
Decimal expansion of a constant related to the asymptotics of A376626 and A376627.
6
3, 3, 3, 5, 2, 6, 0, 2, 0, 7, 0, 3, 7, 0, 8, 0, 8, 6, 0, 2, 9, 1, 2, 2, 4, 4, 8, 1, 5, 6, 3, 3, 5, 2, 4, 6, 7, 3, 0, 8, 8, 4, 9, 8, 7, 0, 9, 9, 2, 7, 7, 9, 6, 8, 2, 0, 6, 1, 3, 7, 0, 4, 6, 5, 3, 8, 3, 8, 2, 8, 8, 8, 1, 9, 4, 3, 7, 2, 1, 2, 0, 1, 2, 2, 7, 4, 2, 2, 8, 0, 3, 2, 7, 5, 6, 4, 1, 8, 2, 1, 6, 4, 3, 7, 3
OFFSET
1,1
FORMULA
Equals exp(sqrt(2*(3*log(r)^2 + polylog(2, 1 - r^2)))), where r = A075778 = 0.7548776662466927600495088963585286918946... is the real root of the equation r^2*(1+r) = 1.
Equals limit_{n->infinity} A376626(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A376627(n)^(1/sqrt(n)).
EXAMPLE
3.33526020703708086029122448156335246730884987099277968...
MATHEMATICA
RealDigits[E^Sqrt[6*Log[r]^2 + 2*PolyLog[2, 1 - r^2]] /. r -> (-1 + ((25 - 3*Sqrt[69])/2)^(1/3) + ((25 + 3*Sqrt[69])/2)^(1/3))/3, 10, 105][[1]]
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Oct 01 2024
STATUS
approved