[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376081
Irregular triangle read by rows: row n is the periodic part of the Leonardo numbers (A001595) modulo n.
3
0, 1, 1, 1, 0, 2, 0, 0, 1, 2, 1, 1, 3, 1, 1, 3, 0, 4, 0, 0, 1, 2, 4, 2, 2, 0, 3, 4, 3, 3, 2, 1, 4, 1, 1, 3, 5, 3, 3, 1, 5, 1, 1, 3, 5, 2, 1, 4, 6, 4, 4, 2, 0, 3, 4, 1, 6, 1, 1, 3, 5, 1, 7, 1, 1, 3, 5, 0, 6, 7, 5, 4, 1, 6, 8, 6, 6, 4, 2, 7, 1, 0, 2, 3, 6, 1, 8
OFFSET
1,6
COMMENTS
Each row n >= 3 ends in (1, n-1) (see Wikipedia article).
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..12347 (rows 1..150 of triangle, flattened).
Wikipedia, Leonardo number.
FORMULA
T(n,k) = A001595(k) mod n, with 0 <= k < A376082(n).
EXAMPLE
Triangle begins:
[1] 0;
[2] 1;
[3] 1, 1, 0, 2, 0, 0, 1, 2;
[4] 1, 1, 3;
[5] 1, 1, 3, 0, 4, 0, 0, 1, 2, 4, 2, 2, 0, 3, 4, 3, 3, 2, 1, 4;
[6] 1, 1, 3, 5, 3, 3, 1, 5;
[7] 1, 1, 3, 5, 2, 1, 4, 6, 4, 4, 2, 0, 3, 4, 1, 6;
[8] 1, 1, 3, 5, 1, 7;
[9] 1, 1, 3, 5, 0, 6, 7, 5, 4, 1, 6, 8, 6, 6, 4, 2, 7, 1, 0, 2, 3, 6, 1, 8;
...
For n = 8:
A001595 = 1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 465, ...
A001595 mod 8 = 1, 1, 3, 5, 1, 7, 1, 1, 3, 5, 1, 7, 1, ...
\_______________/
periodic part
MATHEMATICA
A376081row[n_] := If[n < 3, {n - 1}, Module[{k = 1}, NestWhileList[Mod[2 * Fibonacci[++k] - 1, n] &, 1, {#, #2} != {1, n-1} &, {3, 2}]]];
Array[A376081row, 10]
CROSSREFS
Cf. A001595, A161553, A376082 (row lengths), A376083 (row sums).
Sequence in context: A372809 A210255 A283319 * A049321 A204425 A245187
KEYWORD
nonn,tabf
AUTHOR
Paolo Xausa, Sep 09 2024
STATUS
approved