[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376077
Number of partitions of subsets of [n] containing n > 0, where consecutive integers are required to be in different parts.
2
1, 1, 2, 6, 19, 68, 269, 1168, 5516, 28117, 153668, 895345, 5534292, 36137736, 248364343, 1790801964, 13508326353, 106329846806, 871423555238, 7420685528453, 65539734707912, 599363070599885, 5666859173305898, 55317197561841526, 556788566486730535
OFFSET
0,3
LINKS
FORMULA
a(0) = 1, a(n) = A261041(n) - A261041(n-1) for n>=1.
G.f.: Sum_{j>=0} A000110(j) * (x/(1-x^2))^j.
EXAMPLE
a(3) = 6: 3, 13, 1|3, 2|3, 13|2, 1|2|3.
MAPLE
b:= proc(n, m, i) option remember; `if`(n=0, 1, add(
`if`(i=j and j>0, 0, b(n-1, max(m, j), j)), j=0..m+1))
end:
a:= n-> b(n, 0$2)-`if`(n>0, b(n-1, 0$2), 0):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, m_, i_] := b[n, m, i] = If[n == 0, 1, Sum[If[i == j && j > 0, 0, b[n-1, Max[m, j], j]], {j, 0, m+1}]];
a[n_] := b[n, 0, 0] - If[n > 0, b[n-1, 0, 0], 0];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Sep 18 2024, after Alois P. Heinz *)
CROSSREFS
Cf. A000045, A000110, A261041 (partial sums).
Sequence in context: A150103 A150104 A145868 * A058122 A150105 A150106
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 08 2024
STATUS
approved