[go: up one dir, main page]

login
The maximum exponent in the prime factorization of the numbers whose exponents in their prime factorization are all Fibonacci numbers.
3

%I #7 Aug 28 2024 00:56:55

%S 0,1,1,2,1,1,1,3,2,1,1,2,1,1,1,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,5,1,1,1,

%T 2,1,1,1,3,1,1,1,2,2,1,1,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,1,1,1,2,1,1,1,

%U 3,1,1,2,2,1,1,1,1,1,2,1,1,1,3,1,2,1,2,1,1,1,5,1,2,2,2,1,1,1,3,1,1,1,3,1,1

%N The maximum exponent in the prime factorization of the numbers whose exponents in their prime factorization are all Fibonacci numbers.

%C First differs from A375768 at n = 2448.

%C All the terms are Fibonacci numbers by definition.

%H Amiram Eldar, <a href="/A375766/b375766.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A051903(A115063(n)).

%F a(n) = A000045(A375767(n)).

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/zeta(2) + Sum_{k>=3} (Fibonacci(k) * (d(k) - d(k-1)))) / A375274 = 1.52546070254904121983..., where d(k) = Product_{p prime} ((1-1/p)*(1 + Sum_{i=2..k} 1/p^Fibonacci(i))) for k >= 3, and d(2) = 1/zeta(2).

%t fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; s[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, fibQ], Max[e], Nothing]]; s[1] = 0; Array[s, 100]

%o (PARI) isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);

%o lista(kmax) = {my(e, ans); print1(0, ", "); for(k = 2, kmax, e = factor(k)[,2]; ans = 1; for(i = 1, #e, if(!isfib(e[i]), ans = 0; break)); if(ans, print1(vecmax(e), ", ")));}

%Y Cf. A000045, A051903, A115063, A375274, A375767, A375768.

%K nonn,easy

%O 1,4

%A _Amiram Eldar_, Aug 27 2024