[go: up one dir, main page]

login
A375722
Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^3.
1
1, 9, 117, 1962, 40122, 966276, 26755812, 836862192, 29167596504, 1120629465432, 47044646845848, 2142210019297680, 105154320625284240, 5534780654854980000, 310945503593770489440, 18570787974013838515200, 1174884522886771261079040
OFFSET
0,2
FORMULA
a(n) = (1/2) * Sum_{k=0..n} 3^k * (k+2)! * |Stirling1(n,k)|.
a(0) = 1; a(n) = 3 * Sum_{k=1..n} (2*k/n + 1) * (k-1)! * binomial(n,k) * a(n-k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+3*log(1-x))^3))
(PARI) a(n) = sum(k=0, n, 3^k*(k+2)!*abs(stirling(n, k, 1)))/2;
CROSSREFS
Cf. A367473.
Sequence in context: A113344 A305968 A367473 * A081629 A051617 A358387
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 25 2024
STATUS
approved