[go: up one dir, main page]

login
A375718
Expansion of e.g.f. 1 / sqrt(1 - x^3 * (exp(x) - 1)).
3
1, 0, 0, 0, 12, 30, 60, 105, 15288, 136332, 794160, 3742695, 165156420, 2977295178, 34259966832, 307175369865, 8066201665200, 210501545175960, 3893163654156768, 56023707973290507, 1275541469736173820, 38629328708426716470, 991445561747177496960
OFFSET
0,5
FORMULA
a(n) = n! * Sum_{k=0..floor(n/4)} (Product_{j=0..k-1} (6*j+3)) * Stirling2(n-3*k,k)/(6^k*(n-3k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1-x^3*(exp(x)-1))))
(PARI) a(n) = n!*sum(k=0, n\4, prod(j=0, k-1, 6*j+3)*stirling(n-3*k, k, 2)/(6^k*(n-3*k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 25 2024
STATUS
approved