[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(-5))))).
0

%I #23 May 05 2024 19:46:45

%S 13,23,7,49,13,83,103,5,149,1,29,233,53,23,67,373,59,1,499,109,593,

%T 643,139,107,1,863,71,197,1049,223,1,179,53,1399,59,1553,71,1,257,1,

%U 1973,2063,431,173,67,349,2543,1,2749,571,2963,439,1,3299,683,3533,281,151,557,1,4153

%N Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(-5))))).

%C Conjecture: Except for 49, every term of this sequence is either a prime or 1.

%H Mohammed Bouras, <a href="https://doi.org/10.5281/zenodo.10992128">The Distribution Of Prime Numbers And Continued Fractions</a>, (ppt) (2022)

%F a(n) = (n^2 + 3*n - 5)/gcd(n^2 + 3*n - 5, 5*A051403(n-3) + n*A051403(n-4)).

%F Except for n=6, if gpf(n^2 + 3*n - 5) > n, then we have:

%F a(n) = gpf(n^2 + 3*n - 5), where gpf = "greatest prime factor".

%F If a(n) = a(m) and n < m < a(n), then we have:

%F a(n) = n + m + 3.

%F a(n) divides gcd(n^2 + 3*n - 5, m^2 + 3*m - 5).

%e For n=3, 1/(2 - 3/(-5)) = 5/13, so a(3) = 13.

%e For n=4, 1/(2 - 3/(3 - 4/(-5))) = 19/23, so a(4) = 23.

%e For n=5, 1/(2 - 3/(3 - 4/(4 - 5/(-5)))) = 11/7, so a(5) = 7.

%o (PARI) lf(n) = sum(k=0, n-1, k!); \\ A003422

%o f(n) = (n+2)*lf(n+1)/2; \\ A051403

%o a(n) = (n^2 + 3*n - 5)/gcd(n^2 + 3*n - 5, 5*f(n-3) + n*f(n-4)); \\ _Michel Marcus_, Jun 06 2023

%Y Cf. A006530, A051403.

%Y Cf. A362086, A363102.

%K nonn

%O 3,1

%A _Mohammed Bouras_, Jun 04 2023