[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363482
Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(-5))))).
0
13, 23, 7, 49, 13, 83, 103, 5, 149, 1, 29, 233, 53, 23, 67, 373, 59, 1, 499, 109, 593, 643, 139, 107, 1, 863, 71, 197, 1049, 223, 1, 179, 53, 1399, 59, 1553, 71, 1, 257, 1, 1973, 2063, 431, 173, 67, 349, 2543, 1, 2749, 571, 2963, 439, 1, 3299, 683, 3533, 281, 151, 557, 1, 4153
OFFSET
3,1
COMMENTS
Conjecture: Except for 49, every term of this sequence is either a prime or 1.
FORMULA
a(n) = (n^2 + 3*n - 5)/gcd(n^2 + 3*n - 5, 5*A051403(n-3) + n*A051403(n-4)).
Except for n=6, if gpf(n^2 + 3*n - 5) > n, then we have:
a(n) = gpf(n^2 + 3*n - 5), where gpf = "greatest prime factor".
If a(n) = a(m) and n < m < a(n), then we have:
a(n) = n + m + 3.
a(n) divides gcd(n^2 + 3*n - 5, m^2 + 3*m - 5).
EXAMPLE
For n=3, 1/(2 - 3/(-5)) = 5/13, so a(3) = 13.
For n=4, 1/(2 - 3/(3 - 4/(-5))) = 19/23, so a(4) = 23.
For n=5, 1/(2 - 3/(3 - 4/(4 - 5/(-5)))) = 11/7, so a(5) = 7.
PROG
(PARI) lf(n) = sum(k=0, n-1, k!); \\ A003422
f(n) = (n+2)*lf(n+1)/2; \\ A051403
a(n) = (n^2 + 3*n - 5)/gcd(n^2 + 3*n - 5, 5*f(n-3) + n*f(n-4)); \\ Michel Marcus, Jun 06 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Mohammed Bouras, Jun 04 2023
STATUS
approved